A Novel Approach for Combined Joint Call Admission Control and Dynamic Bandwidth Adaptation in Heterogeneous Wireless Networks

Christian Lottermann, Andreas Klein

Institute for Wireless Communications and Navigation
University of Kaiserslautern

June 27, 2011

Introduction

Joint Call Admission Control and Bandwidth Adaptation

Evaluation of the Concept

Conclusion and Outlook
Introduction

Joint Call Admission Control and Bandwidth Adaptation

Evaluation of the Concept

Conclusion and Outlook

Common Radio Resource Management

- Mobile Network Operators (MNOs) usually operate more than one access network in the same service area
- Proper allocation and coordination of the mobile services among the different access network technologies: Common Radio Resource Management (CRRM)
- Functions are split among two types of entities:
Introduction

Joint Call Admission Control and Bandwidth Adaptation

Evaluation of the Concept

Conclusion and Outlook

Two main *semi persistent* CRRM concepts:

Joint Call Admission Control (JCAC)
- Makes it possible to decide to which RAN the terminal or service should be deployed or handover performed to

Dynamic Bandwidth Adaptation (DBA)
- Keeps *blocking* and *dropping rates* on a low level
- Improves system utilization
- Based on a *generic* resource allocation approach
- Radio resources are generalized to a common basis: *Effective Bandwidth*
Scenario with two heterogeneous RANs co-deployed in the same service area
- Cells that cover the same service area are merged to a Cell Area
- Core Network coupling approach is considered
 - All semi persistent RRM functions are performed by a central entity
 - Fast dynamic RRM functions are not considered
- UE can only be connected to one RAN at a time

Utility Concept
- Utility represents a measure of relative satisfaction w.r.t. consumption of goods and services
- In the present context: Generic measurement of the gained profit of the MNO that operates the RANs
- Represented by a Utility Function
 \[u_{i,j} = U(a_j(b), \pi_j, \rho_i) \]
 where
 - \(a_j(b) \): Application utility function, dependent on the service
 - \(\pi_j \): Priority factor, represents priority level of the user (SLA)
 - \(\rho_i \): RAN factor, set by MNO
- In the following the utility function is defined by
 \[u_{i,j} = a_j(b) \cdot \pi_j \cdot \rho_i \]
Different types of services:

Elastic Services

\[
u_{\text{elastic}}(b) = 1 - e^{-\frac{b}{b_{\text{max}}}}\]

Non-Elastic Services

\[
u_{\text{non-elastic}}(b) = \begin{cases} 1 & b \geq b_{\text{min}} \\ 0 & b < b_{\text{min}} \end{cases}\]
Core Concept

- DBA and JCAC are realized in a *nested* way
- All actions are performed per Cell-Area and are performed in a *bundled* manner, each $TTI_{semi\text{-}persistent}$

Joint Call Admission Control

- JCAC makes it possible to decide by which RAN a terminal should be served and the resp. service should be provided
- Different policies can be implemented
- In the present case two opposed interests are taken into consideration
 - Maximization of the MNO’s profit
 - QoS requirements of the requested services need to be taken into consideration
- Modelling Approach: JCAC problem is mapped to a *Generalized Assignment Problem (GAP)*
N items need to be placed in M bins
- Each bin C_i has a maximum capacity c_i
- Each item has a certain defined weight $w_{i,j}$ and a corresponding profit $u_{i,j}$ dependent on the bin
- Mathematical description of the problem

$$z = \max \sum_{i=1}^{m} \sum_{j=1}^{n} u_{i,j} \cdot x_{i,j}$$

s.t. $\sum_{j=1}^{n} w_{i,j} \cdot x_{i,j} \leq c_i$ $\forall i \in M = \{1, \ldots, m\}$

$$\sum_{j=1}^{m} x_{i,j} = 1 \quad \forall j \in N = \{1, \ldots, n\}$$

$$x_{i,j} = \{0, 1\} \quad \forall i \in M, j \in N$$

Analogy between GAP to JCAC
- Bin – Cell of a RAN
- Item – Service to be deployed

Solution Algorithm
- An approximative solution algorithm is required
- A solution approach has been chosen that splits the GAP into M separate assignment problems per bin
 - A lot of approximative solution algorithms exist for single assignment problems
 - In the present case: a *greedy* algorithm has been chosen
Dynamic Bandwidth Adaptation is split into two parts:

Arrival Algorithm

- Calculates the demand of the incoming services
- Acquires as much resources as required or possible
- In case $B_{\text{req}} = \sum \forall j b_j > B_{\text{avail}}$:
 - Already deployed elastic services are sorted according to their utility slope in an ascending order
 \[u'_1 < u'_2 < \ldots < u'_n \]
 - Already deployed services are degraded until enough resources are available
 - leads to a minor utility loss

Departure Algorithm

- Remaining cell capacity is allotted to all deployed elastic services
- Services are sorted according to their utility slope in a descending order
 \[u'_1 > u'_2 > \ldots > u'_n \]
- More resources are granted to a service until $b = b_{\text{max}}$ or cell reached its defined maximum load
Introduction

Joint Call Admission Control and Bandwidth Adaptation

Evaluation of the Concept

Conclusion and Outlook

Other JCAC Approaches

In order to evaluate the proposed concept another Joint Call Admission Control algorithm has been used as a reference

Adaptive Joint Call Admission Control (AJCAC)

▶ Falowo et al. propose a JCAC scheme that aims to distribute the load of incoming services w.r.t. the load of the cells
▶ Each service is considered separately
▶ A group of co-located cells is considered as an input for the JCAC algorithm
▶ For comparison reasons, DBA algorithms remain the same
A fully co-deployed LTE and HSPA environment is considered
Simulation area consists of 36 cells per RAN, with a wrap-around model
Number of users is defined by an initial number of users per cell
Each user has a randomly chosen residing time which is calculated by a range of different velocities $v_{UE} \in [0, 60] \text{ km/h}$
Event-based OMNeT++ has been used as a simulation platform
 - Extended with new modules
 - Control plane of a co-deployed UTRAN/E-UTRAN SAE system has been developed

Overall Gained Utility

$$U_{overall} = \sum_{\forall i, \forall j} u_{i,j}$$
Dropping Probability

![Dropping Probability Graph]

Blocking Probability

![Blocking Probability Graph]
Relative Cell Load

\[\eta_i = \sum \forall j b_{i,j} \frac{B_j}{\text{capacity}} \]

Satisfied Elastic Services

\[r_{\text{satisfied, RAN}} = \frac{N_{\text{elastic, satisfied}}}{N_{\text{elastic}}} \]
Introduction

Joint Call Admission Control and Bandwidth Adaptation

Evaluation of the Concept

Conclusion and Outlook

- A novel utility definition for heterogeneous wireless networks has been defined
- Novel approach for combined JCAC and DBA has been introduced
 - Aims to improve the MNO’s revenue
 - Takes QoS requirements of the requested services into consideration
- A simulation platform has been developed in order to evaluate and compare the proposed concept
- The results show an improvement of the overall gained utility of up to 6% compared to other JCAC approaches while keeping the system performance metrics at an acceptable level
Thank you for your attention!

Questions?

lottermann@eit.uni-kl.de
aklein@eit.uni-kl.de